Comprehensive Python Programming Guide – Part 3

Advanced Python – OOP, Data Science, Debugging, and Error Handling

Python’s elegance lies not just in its simplicity, but in its depth – a language that scales seamlessly from scripting trivial tasks to powering enterprise-grade systems. As you venture beyond the basics, you unlock paradigms and tools that transform Python from a handy utility into a professional powerhouse, capable of architecting complex systems, unearthing data-driven insights, and delivering unshakable reliability.

This guide dives into three pillars of advanced Python mastery:

  • Object-Oriented Programming (OOP): Structure code like a seasoned engineer. Learn to model real-world entities with classes, enforce data integrity through encapsulation, and design hierarchies that promote reuse and scalability. OOP isn’t just syntax, it’s the art of organizing chaos into clarity.
  • Data Science & Machine Learning: Turn raw data into intelligence. Harness libraries like NumPy, Pandas, and Scikit-learn to clean, analyze, and visualize datasets, then train models that predict trends, classify patterns, and automate decisions. Python’s ecosystem transforms you from a coder into a data alchemist.
  • Debugging & Error Handling: Code that survives the real world isn’t flawless, it’s resilient. Master tools like pdb and try/except blocks to diagnose issues, recover gracefully from exceptions, and ensure your programs fail predictably.

Why These Skills Matter:

  • OOP empowers you to build modular systems that evolve with shifting requirements.
  • Data Science equips you to extract stories from numbers, driving decisions in AI, finance, healthcare, and beyond.
  • Debugging ensures your code isn’t just functional—it’s dependable, even under edge cases.

Together, these disciplines form the trifecta of professional Python development. Whether you’re architecting APIs, training neural networks, or hardening production systems, this guide bridges the gap between writing code and engineering solutions. Let’s elevate your craft.


9. Object-Oriented Programming (OOP) in Python

Object-Oriented Programming is a paradigm that organizes code into objects, self-contained units that encapsulate data (attributes) and behavior (methods). By modeling real-world entities and their interactions, OOP promotes modular, intuitive, and scalable code. At its foundation lie four core principles:

  • Encapsulation: Bundling data and methods within a class to protect internal state. Access modifiers (e.g., public/private conventions in Python) restrict direct manipulation of sensitive data, ensuring controlled interaction through defined interfaces.
  • Abstraction: Simplifying complexity by exposing only essential features while hiding implementation details. Users interact with high-level interfaces, shielding them from underlying intricacies, which fosters usability and reduces cognitive overhead.
  • Inheritance: Establishing hierarchical relationships between classes, enabling child classes to inherit and extend functionality from parent classes. This mechanism promotes code reuse, logical organization, and the creation of specialized subclasses without redundant code.
  • Polymorphism: Allowing objects of different classes to respond to the same method name, adapting behavior based on context. Through method overriding or duck typing, Python enables flexible, extensible code that works seamlessly across related objects.

Why OOP Matters
OOP transforms codebases into structured systems that mirror real-world logic. By isolating components into classes, it enhances maintainability (changes in one module rarely disrupt others), scalability (extend functionality via inheritance), and collaboration (clear interfaces streamline teamwork). From designing APIs to modeling business domains, OOP empowers developers to craft robust, future-proof applications that evolve with changing requirements.

# Example: A Restaurant Class
# Let's model a restaurant management system using OOP principles.
# Base Class: Restaurant
class Restaurant:
    """
    A base class representing a restaurant.
    
    Attributes:
        name (str): The name of the restaurant
        cuisine (str): The type of cuisine served
        __rating (float): The restaurant's rating (private attribute)
    """
    
    def __init__(self, name: str, cuisine: str, rating: float):
        """
        Initialize a new Restaurant instance.
        
        Args:
            name (str): The name of the restaurant
            cuisine (str): The type of cuisine served
            rating (float): The restaurant's rating (0-5)
        """
        self.name = name          # Public attribute
        self.cuisine = cuisine    # Public attribute
        self.__rating = rating    # "Private" attribute (convention only)

    def display_info(self) -> str:
        """
        Display basic information about the restaurant.
        
        Returns:
            str: Formatted string containing restaurant details
        """
        return f"{self.name} ({self.cuisine}) - Rating: {self.__rating}/5"

    def _update_rating(self, new_rating: float) -> None:
        """
        Update the restaurant's rating (protected method).
        
        Args:
            new_rating (float): New rating value (0-5)
        """
        self.__rating = new_rating

# Key Features:
# Encapsulation: __rating is "private" (name-mangled).
# Abstraction: Users interact with display_info(), not _update_rating().

# Inheritance & Polymorphism
# Let's create a FastFoodRestaurant subclass with additional features:
class FastFoodRestaurant(Restaurant):
    """
    A subclass of Restaurant representing a fast-food restaurant.
    
    Attributes:
        drive_thru (bool): Whether the restaurant has a drive-thru
    """
    
    def __init__(self, name: str, cuisine: str, rating: float, drive_thru: bool):
        """
        Initialize a new FastFoodRestaurant instance.
        
        Args:
            name (str): The name of the restaurant
            cuisine (str): The type of cuisine served
            rating (float): The restaurant's rating (0-5)
            drive_thru (bool): Whether the restaurant has a drive-thru
        """
        super().__init__(name, cuisine, rating)
        self.drive_thru = drive_thru  # New attribute

    def display_info(self) -> str:
        """
        Display information about the fast-food restaurant.
        
        Returns:
            str: Formatted string containing restaurant details including drive-thru status
        """
        base_info = super().display_info()
        return f"{base_info} | Drive-thru: {'Yes' if self.drive_thru else 'No'}"

    def serve_fast(self) -> str:
        """
        Simulate fast food service.
        
        Returns:
            str: Message indicating order readiness
        """
        return "Order ready in 3 minutes!"

# Example usage
italian_spot = Restaurant("Mama Mia", "Italian", 4.7)
sushi_heaven = Restaurant("Sakura", "Japanese", 4.9)
burger_joint = FastFoodRestaurant("QuickBite", "American", 4.3, True)

# Display information
print(italian_spot.display_info())  
# Output: "Mama Mia (Italian) - Rating: 4.7/5"

print(burger_joint.display_info())  
# Output: "QuickBite (American) - Rating: 4.3/5 | Drive-thru: Yes"

print(burger_joint.serve_fast())    
# Output: "Order ready in 3 minutes!"

10. Data Science and Machine Learning

Python’s dominance in data science and machine learning (ML) stems from its unrivaled ecosystem of specialized libraries, which streamline every stage of the analytics lifecycle from raw data to deployable models. These tools democratize complex workflows, enabling professionals to focus on insights rather than implementation hurdles.

Core Libraries & Their Roles

  • NumPy: The bedrock of numerical computing, providing multi-dimensional arrays and vectorized operations for blazing-fast mathematical computations. Its memory-efficient design powers large-scale matrix operations, foundational for all data tasks.
  • Pandas: The spreadsheet of Python, built on NumPy, introduces DataFrames for intuitive manipulation of structured data. Clean messy datasets, handle missing values, merge/reshape data, and perform time-series analysis with ease.
  • Scikit-learn: The Swiss Army knife of traditional ML, offering end-to-end workflows for classification, regression, clustering, and model evaluation. From preprocessing (scaling, encoding) to hyperparameter tuning, it simplifies prototyping with consistent APIs.
  • TensorFlow/PyTorch: Powerhouses for deep learning, enabling neural networks for vision, NLP, and generative AI. TensorFlow excels in production-grade deployments, while PyTorch’s dynamic computation graph appeals to research flexibility.
  • Matplotlib/Seaborn: Transform data into stories. Matplotlib provides granular control over static/interactive visualizations, while Seaborn adds statistical elegance (heatmaps, distribution plots) with minimal code.

The Data Science Workflow

  • Ingest & Explore: Load data (CSV, SQL, APIs) with Pandas, then profile distributions and correlations.
  • Preprocess: Handle outliers, normalize features (Scikit-learn’s StandardScaler), and encode categorical variables.
  • Model: Train algorithms (linear regression, random forests) or neural networks, leveraging Scikit-learn or TensorFlow.
  • Evaluate: Validate with metrics (accuracy, F1-score, RMSE) and cross-validation to avoid overfitting.
  • Deploy: Export models to production via APIs (FastAPI) or embedded systems (TensorFlow Lite).

10.1 Numpy

NumPy is Python’s core library for numerical computing, offering high-performance multi-dimensional arrays and tools for fast mathematical operations. Its vectorized functions eliminate loops, enabling efficient data processing and seamless integration with scientific libraries. NumPy accelerates large-scale data analysis, simulations, and matrix operations, forming the backbone of Python’s data science ecosystem.

# NumPy Tutorial Script
# This script demonstrates basic NumPy operations with detailed comments

import numpy as np

# Creating Arrays
print("\n=== Creating Arrays ===")
# Create a 1D array
arr1d = np.array([1, 2, 3, 4, 5])
print("1D Array:", arr1d)
print("Shape:", arr1d.shape)

# Create a 2D array
arr2d = np.array([[1, 2, 3], [4, 5, 6]])
print("\n2D Array:\n", arr2d)
print("Shape:", arr2d.shape)

# Basic Array Operations
print("\n=== Basic Array Operations ===")
# Create two arrays for demonstration
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])

# Addition
print("Addition:", a + b)
# Subtraction
print("Subtraction:", a - b)
# Multiplication
print("Multiplication:", a * b)
# Division
print("Division:", a / b)

# Array Functions
print("\n=== Array Functions ===")
# Create a random array
random_arr = np.random.rand(5)
print("Random Array:", random_arr)

# Basic statistics
print("Mean:", np.mean(random_arr))
print("Standard Deviation:", np.std(random_arr))
print("Maximum:", np.max(random_arr))
print("Minimum:", np.min(random_arr))

# Reshaping Arrays
print("\n=== Reshaping Arrays ===")
# Create a 1D array
arr = np.array([1, 2, 3, 4, 5, 6])
print("Original Array:", arr)
# Reshape to 2x3 matrix
reshaped = arr.reshape(2, 3)
print("Reshaped Array:\n", reshaped)

# Array Indexing and Slicing
print("\n=== Array Indexing and Slicing ===")
# Create a 2D array
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print("Original Matrix:\n", matrix)
# Get first row
print("First Row:", matrix[0])
# Get first column
print("First Column:", matrix[:, 0])
# Get a sub-matrix
print("Sub-matrix (first 2x2):\n", matrix[:2, :2])

# Special Arrays
print("\n=== Special Arrays ===")
# Create zeros array
zeros = np.zeros((3, 3))
print("Zeros Array:\n", zeros)
# Create ones array
ones = np.ones((3, 3))
print("Ones Array:\n", ones)
# Create identity matrix
identity = np.eye(3)
print("Identity Matrix:\n", identity)

10.2 Pandas

Pandas is Python’s premier library for data manipulation and analysis, built on NumPy. It introduces DataFrames (tabular data) and Series (1D arrays), enabling intuitive handling of structured datasets. Pandas excels at cleaningfiltering, and aggregating data, with tools for merging datasets, handling missing values, and time-series analysis. Its seamless integration with files (CSV, Excel, SQL) and vectorized operations make it essential for data wrangling and exploratory analysis in data science.

# Pandas Tutorial Script
# This script demonstrates basic Pandas operations with detailed comments

import pandas as pd
import numpy as np

# Pandas Series Basics
print("\n=== Pandas Series Basics ===")
# Create a Series from a list
numbers = pd.Series([1, 2, 3, 4, 5])
print("Basic Series:\n", numbers)

# Create a Series with custom index
fruits = pd.Series(['Apple', 'Banana', 'Orange'], index=['a', 'b', 'c'])
print("\nSeries with custom index:\n", fruits)

# Create a Series from a dictionary
scores = pd.Series({'Math': 85, 'Science': 92, 'English': 88})
print("\nSeries from dictionary:\n", scores)

# Series Operations
print("\n=== Series Operations ===")
# Basic arithmetic operations
series1 = pd.Series([1, 2, 3, 4, 5])
series2 = pd.Series([10, 20, 30, 40, 50])
print("Addition:\n", series1 + series2)
print("\nMultiplication:\n", series1 * series2)

# Series Methods
print("\n=== Series Methods ===")
# Create a sample series
data = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
print("Original Series:\n", data)
print("\nMean:", data.mean())
print("Median:", data.median())
print("Standard Deviation:", data.std())
print("Maximum:", data.max())
print("Minimum:", data.min())

# Series Indexing and Slicing
print("\n=== Series Indexing and Slicing ===")
# Create a series with custom index
series = pd.Series([10, 20, 30, 40, 50], index=['a', 'b', 'c', 'd', 'e'])
print("Original Series:\n", series)
print("\nValue at index 'b':", series['b'])
print("Values from 'b' to 'd':\n", series['b':'d'])

# Series with Missing Values
print("\n=== Series with Missing Values ===")
# Create a series with NaN values
series_with_nan = pd.Series([1, np.nan, 3, np.nan, 5])
print("Series with NaN values:\n", series_with_nan)
print("\nIs null:\n", series_with_nan.isnull())
print("\nFill NaN with mean:", series_with_nan.fillna(series_with_nan.mean()))

# Pandas DataFrame Basics
print("\n=== Pandas DataFrame Basics ===")
# Create a simple DataFrame
data = {
    'Name': ['John', 'Anna', 'Peter'],
    'Age': [28, 22, 35],
    'City': ['New York', 'Paris', 'London']
}
df = pd.DataFrame(data)
print("Basic DataFrame:\n", df)

# Display DataFrame Information
print("\n=== DataFrame Information ===")
# Display basic information about the DataFrame
print("DataFrame Info:")
print(df.info())

# Display DataFrame shape (rows x columns)
print("\nDataFrame Shape (rows x columns):", df.shape)

# Display column names
print("\nColumn Names:", df.columns.tolist())

# Display data types of each column
print("\nData Types:\n", df.dtypes)

# Display basic statistics for numerical columns
print("\nBasic Statistics:\n", df.describe())

# Display memory usage
print("\nMemory Usage:\n", df.memory_usage(deep=True))

# Display number of non-null values per column
print("\nNon-null Counts:\n", df.count())

# Pandas Data Operations
print("\n=== Pandas Data Operations ===")
# Create a larger dataset
dates = pd.date_range(start='2024-01-01', periods=5, freq='D')
df2 = pd.DataFrame({
    'Date': dates,
    'Sales': np.random.randint(100, 1000, 5),
    'Expenses': np.random.randint(50, 500, 5)
})
print("Time Series DataFrame:\n", df2)

# Basic statistics
print("\nBasic Statistics:")
print(df2.describe())

# Pandas Data Manipulation
print("\n=== Pandas Data Manipulation ===")
# Add a new column
df2['Profit'] = df2['Sales'] - df2['Expenses']
print("DataFrame with new column:\n", df2)

# Filter data
high_profit = df2[df2['Profit'] > 300]
print("\nHigh Profit Days:\n", high_profit)

# Sort data
sorted_df = df2.sort_values('Profit', ascending=False)
print("\nSorted by Profit:\n", sorted_df)

# Pandas Grouping and Aggregation
print("\n=== Pandas Grouping and Aggregation ===")
# Create a sample dataset
data = {
    'Category': ['A', 'B', 'A', 'B', 'A'],
    'Value': [100, 200, 150, 250, 300]
}
df3 = pd.DataFrame(data)

# Group by and calculate mean
grouped = df3.groupby('Category').agg({
    'Value': ['mean', 'count', 'sum']
})
print("Grouped Statistics:\n", grouped)

# Pandas Data Cleaning
print("\n=== Pandas Data Cleaning ===")
# Create a dataset with missing values
df4 = pd.DataFrame({
    'A': [1, np.nan, 3, 4],
    'B': [5, 6, np.nan, 8],
    'C': [9, 10, 11, 12]
})
print("DataFrame with missing values:\n", df4)

# Handle missing values
df4_cleaned = df4.fillna(df4.mean())
print("\nCleaned DataFrame (filled with mean):\n", df4_cleaned)

# Pandas File Operations
print("\n=== Pandas File Operations ===")
# Save DataFrame to CSV
df.to_csv('sample_data.csv', index=False)
print("DataFrame saved to 'sample_data.csv'")

# Read from CSV
df_read = pd.read_csv('sample_data.csv')
print("\nDataFrame read from CSV:\n", df_read)

10.3 Machine Learning

The below Python script implements an end-to-end machine learning pipeline using scikit-learn’s Iris dataset, which includes measurements (sepal/petal length/width) from three iris species. The workflow begins by loading and exploring the dataset, then splits it into training/testing sets and standardizes features using StandardScaler. A Random Forest Classifier is trained to predict flower species, followed by evaluation via classification metrics (e.g., accuracy, confusion matrix) and visualization of feature importance. Finally, the model makes predictions on new samples, demonstrating its practical application. This script encapsulates core ML principles – data preparation, model optimization, validation, and inference in a concise, reproducible format.

# Scikit-learn Machine Learning Example
# This script demonstrates a basic machine learning workflow using scikit-learn

# Import required libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix

print("\n=== Scikit-learn Machine Learning Example ===")

# Load the iris dataset
print("Loading Iris dataset...")
iris = load_iris()

# Create a DataFrame for better visualization
iris_df = pd.DataFrame(iris.data, columns=iris.feature_names)
iris_df['target'] = iris.target
iris_df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names)

# Display basic information about the dataset
print("\nDataset Information:")
print(iris_df.info())
print("\nFirst few rows of the dataset:")
print(iris_df.head())

# Split the data into training and testing sets
print("\nSplitting data into training and testing sets...")
X_train, X_test, y_train, y_test = train_test_split(
    iris.data, iris.target, 
    test_size=0.2, 
    random_state=42
)

# Scale the features
print("\nScaling the features...")
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Train a Random Forest Classifier
print("\nTraining Random Forest Classifier...")
model = RandomForestClassifier(
    n_estimators=100,
    random_state=42
)
model.fit(X_train_scaled, y_train)

# Make predictions
print("\nMaking predictions...")
y_pred = model.predict(X_test_scaled)

# Evaluate the model
print("\nModel Evaluation:")
print("Classification Report:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))

# Create confusion matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
            xticklabels=iris.target_names,
            yticklabels=iris.target_names)
plt.title('Confusion Matrix')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
plt.show()

# Feature importance
print("\nFeature Importance:")
feature_importance = pd.DataFrame({
    'feature': iris.feature_names,
    'importance': model.feature_importances_
})
print(feature_importance.sort_values('importance', ascending=False))

# Make predictions on new samples
print("\nMaking predictions on new samples...")
new_samples = [
    [5.1, 3.5, 1.4, 0.2],  # Iris Setosa
    [6.7, 3.0, 5.2, 2.3],  # Iris Virginica
    [6.0, 2.7, 5.1, 1.6]   # Iris Versicolor
]
new_samples_scaled = scaler.transform(new_samples)
predictions = model.predict(new_samples_scaled)
print("\nPredictions for new samples:")
for i, pred in enumerate(predictions):
    print(f"Sample {i+1}: Predicted as {iris.target_names[pred]}")

11. Debugging and Error Handling

Even the most carefully written code can encounter unexpected issues. Python provides powerful tools to diagnose errors and gracefully handle exceptions, ensuring your programs fail predictably and recover smoothly.

# Python Debugging and Error Handling Examples
# This file demonstrates debugging techniques from basic to advanced
# Follow the progression to learn debugging step by step

# Level 1: Basic Debugging Techniques
# 1. Print Debugging (Simplest)
def calculate_average(numbers):
    print(f"Debug: Input numbers = {numbers}")  # Debug print
    total = sum(numbers)
    print(f"Debug: Total = {total}")  # Debug print
    return total / len(numbers)

# Usage: calculate_average([1, 2, 3, 4, 5])

# 2. Try-Except (Basic Error Handling)
def safe_divide(a, b):
    try:
        result = a / b
        return result
    except ZeroDivisionError:
        print("Error: Cannot divide by zero")
        return None
    except TypeError:
        print("Error: Please provide numbers")
        return None

# Usage: safe_divide(10, 2)  # Works fine
# Usage: safe_divide(10, 0)  # Handles division by zero
# Usage: safe_divide(10, "2")  # Handles type error

# Level 2: Intermediate Debugging
# 3. Assert Statements (Basic Validation)
def divide(a, b):
    assert b != 0, "Cannot divide by zero"  # Debug assertion
    return a / b

# Usage: divide(10, 2)  # Works fine
# Usage: divide(10, 0)  # Raises AssertionError

# 4. Logging (Better than print)
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

def process_data(data):
    logger.debug(f"Processing data: {data}")
    try:
        result = data * 2
        logger.info(f"Successfully processed data: {result}")
        return result
    except Exception as e:
        logger.error(f"Error processing data: {e}")
        return None

# Usage: process_data(5)  # Works fine
# Usage: process_data("5")  # Logs error

# Level 3: Interactive Debugging
# 5. Breakpoint (Simple Interactive)
def complex_calculation(x):
    # breakpoint()  # Uncomment to pause execution here
    result = x * 2
    # breakpoint()  # Uncomment to pause execution here
    return result + 1

# Usage: complex_calculation(5)  # Uncomment breakpoint() to try

# 6. PDB (Command-line Debugger)
import pdb

def process_list(items):
    # pdb.set_trace()  # Uncomment to start pdb debugger
    total = 0
    for item in items:
        total += item
    return total

# Usage: process_list([1, 2, 3, 4, 5])  # Uncomment pdb.set_trace() to try

# Level 4: Advanced Debugging
# 7. IDE Debugging (Visual Debugging)
def calculate_factorial(n):
    # Set a breakpoint in your IDE at the next line
    if n <= 1:
        return 1
    return n * calculate_factorial(n - 1)

# Usage: calculate_factorial(5)  # Set breakpoint in IDE to try

# 8. Inspect Module (Runtime Inspection)
import inspect

def debug_function():
    # Get current function name
    current_function = inspect.currentframe().f_code.co_name
    # Get line number
    line_number = inspect.currentframe().f_lineno
    print(f"Debug: Currently in {current_function} at line {line_number}")

# Usage: debug_function()

# 9. Performance Debugging (Advanced Profiling)
import timeit

def performance_test():
    # Example of measuring code execution time
    setup = "import math"
    stmt = "math.sqrt(16)"
    time = timeit.timeit(stmt, setup=setup, number=1000)
    print(f"Time taken: {time} seconds")

# Usage: performance_test()

# Debugging Tips by Level:
"""
Level 1: Basic Debugging
-----------------------
1. Print Debugging:
   - Use print() statements to track variable values
   - Add descriptive labels to your debug prints
   - Remove or comment out debug prints before final code

2. Try-Except:
   - Use try-except to handle expected errors
   - Be specific about which exceptions to catch
   - Don't catch all exceptions unless necessary

Level 2: Intermediate Debugging
-----------------------------
3. Assert Statements:
   - Use assert to check conditions that should be true
   - Helps catch bugs early in development
   - Can be disabled with -O flag when running Python

4. Logging:
   - Better than print() for debugging
   - Can set different log levels (DEBUG, INFO, WARNING, ERROR)
   - Can be configured to write to files

Level 3: Interactive Debugging
----------------------------
5. Breakpoints:
   - Use breakpoint() for Python 3.7+ interactive debugging
   - Use pdb.set_trace() for older Python versions
   - Allows inspection of variables at specific points

6. PDB (Python Debugger):
   - Commands: n (next), s (step), c (continue), p (print)
   - Use 'p variable_name' to print variable values
   - Use 'l' to list source code around current line

Level 4: Advanced Debugging
-------------------------
7. IDE Debugging:
   - Set breakpoints by clicking line numbers
   - Use step over, step into, and step out
   - Inspect variables in debug window
   - Use watch expressions

8. Inspect Module:
   - Get current function name
   - Get line numbers
   - Inspect call stack
   - Get function arguments

9. Performance Debugging:
   - Use timeit for measuring execution time
   - Profile code with cProfile
   - Use line_profiler for line-by-line timing
   - Monitor memory usage with memory_profiler
""" 

Conclusion: Advanced Python

You’ve made it to the pinnacle! You’re now equipped to debug tricky errors, streamline code, and even train machine learning models. These advanced skills open doors to careers in AI, data science, and software engineering.

What’s Next?
Python is a lifelong journey. Revisit Part 1 to reinforce basics or Part 2 to polish your logic. Then, explore beyond this guide:

  • Build a portfolio project (e.g., a weather app or sentiment analyzer).
  • Dive into frameworks like Django (web) or FastAPI (APIs).

“You’re no longer a student, you’re a Pythonista. Go build something amazing.” 

Comments

No comments yet. Why don’t you start the discussion?

Leave a Reply

Your email address will not be published. Required fields are marked *